

On Transversal and Y-Extremal Hypersurfaces

Prakash Chandra Srivastava

Department of Maths S.D.J.P.G. College, Chandeshwar Azamgarh - 2760001 India

Date of Submission: 10-11-2021	Date of Acceptance: 26-11-2021

ABSTRACT -

We consider torsion free recurrent-connection, The induced linear Y-connection recurrency with respect to h-recurrent Finsler Connection transversal hyper-surface.

I. INTRODUCTION :-

Theory of hyper-surfaces in Finsler space has been first considered by E.Cartan [1] from two point of view. One is to regard a hyper-surface as the whole of tangent line elements then it is also a Finsler Space [3]. The other is to regard it as whole of normal line elements then it is a Riemannian Space. J.M. Wagner ([4]) has treated hyper-surfaces from latter view point and dealt in particular with minimal hyper-surfaces.

II. TRANSVERSAL HYPERSURFACE :-

We are concerned with torsion free recurrent Finsler Connection Rec. I(a) for which $T_{jk}^i = 0$ then (2.1) is -

(2.1) $\bar{g}_{ir}(Y_j^r - Y_k^r Y_j - Y^k) + \frac{1}{2}Y_i - \bar{a}_j = \bar{g}_{jr}(Y_i^r - Y_k^r Y^k - Y_i) + \frac{1}{2}Y_j - \bar{a}_i$

In this (2.2) case fs Y is auto parallel, then (2.2) reduces to

 $(2.2) \ \bar{g}_{ir} \ Y_j^r + Y_i \ (T_{jrk} \ Y^r \ Y^k + \frac{1}{2} \ \bar{a}_j) - i/j \ \} + Yr \ T_{ij}^r = 0$ $(2.2) \ Yg^{ij} \ Y^r + \frac{1}{2} \ Y_i \ \bar{a}_j = \bar{g}_{jr} \ Y_i^r + \frac{1}{2} \ Y_j \ \bar{a}_j$

Now we consider the geometry of transversal hyper-

surface M^{n-1} : $x^i = x^i$ (μ^{α}). The vector field Y normalized by Finsler metric L i.e.

(2.3) g_{ij} (x y) Y^i $Y^j = 1$ the unit vector field or thogonal to M^{n-1} in sense of

(2.4) gij (x,y) $Y^i B^j_{\alpha} = 0$ $\alpha = 1$ -----n-1 So we get a field of frame $(B^i_{\alpha} Y^i)$ along M^{n-1} further from.

(2.5) $\bar{g}_{ir}(x) = g_{ij}(x, y)$

We get induced Riemannian Y metric on M^{n-1} (2.6) $g\alpha\beta = g_{ij}(x, y) B^i_{\alpha} B^j_{\beta}$ and have a linear connection I(Y) induced from the linear Y-connection Y ($_{\Gamma}$).

Denoting $(B_i^{\alpha}, \mathbf{Y}^i)$ the dual cofrome of $(B_{\alpha}^i, \mathbf{Y}^i)$ The connection coefficient $\prod_{\beta_{Y}}^{2}$ (u) of $I(\mathbf{Y})$ are

$$\Gamma^{\alpha}_{\beta\gamma} = B^{\alpha}_{i} \qquad (B^{i}_{\beta\gamma} + B^{i}_{\beta} \quad \overline{\sqrt{jk}}^{\iota} \quad B^{k}_{\gamma})$$
$$B^{i}_{\beta} = \frac{\partial B^{i}_{\beta}}{\partial u^{r}}$$
So we get so called gauss equ.

(2.7) B^i_{α} ; $\beta = H_{\alpha}\beta Y^i$

Where denote the relative covariant differentiation along M^{n-1} i.e.

(2.8) B^i_{α} ; $\beta = B^i_{\alpha\beta} + B^r_{\alpha} \sqrt{Jk}^l B^k_{\beta} - P^i \Gamma^r_{\alpha\beta}$ and $H_{\alpha}\beta$ is the second fundamental tessor of M^{n-1} So we obtain. So called Weingarte eq.

(2.9) $Y_{;\beta}^{i} = H_{\beta}^{\alpha} B_{\alpha}^{i} - \frac{1}{2} a_{\beta} Y^{i}$ It is obvious that $\sqrt{(y)}$ is also recurrent with respect to induced Riemannian Y-metric

$$g_{\alpha}\beta_{;\gamma} = a\gamma \ g_{\alpha}\beta$$

From (2.10) and (2.11)
$$B^{i}_{\alpha;\beta} = H_{\alpha\beta} \ Y^{i}$$

(2.11) $B^{i}_{\alpha;\beta} = B^{i}_{\alpha\beta} + B^{r}_{\alpha} \sqrt{\mathbf{jk}}^{i} \qquad B^{k}_{\beta} - B^{i}_{\gamma} \sqrt{\alpha\beta}^{\gamma}$ torsion tensor $T^{\alpha}_{\beta\gamma}$ of $\sqrt{(y)}$ and $F_{\beta} = H_{\beta\alpha}$ are given by

$$(2.12) T^{\alpha}_{\beta\gamma} = B^{\alpha}_i \overline{T}^i_{jk} B^j_{\alpha} B^j_{\mu}$$

(2.13)
$$H_{\alpha\beta} - H_{\beta\alpha} = \mathbf{Y}_i \quad \overline{T}_{jk}^i \quad B_{\alpha}^{\iota} \quad B_{\beta}^k$$

We consider the Y₂ tensor field Y_j^i along Mⁿ⁻¹. The relative covariant derivative Y_{iB}^i of Yⁱ is defined as

$$Y^{i}_{,\beta} = \frac{\partial Y^{i}}{\partial u^{\beta}} + Y^{i} \quad \overline{\sqrt{jk}}^{i} \quad B^{k}_{\beta} - Y^{i}_{k} \quad B^{k}_{\beta}$$

So if we write Y_j^i with respect to frame ($B_{\alpha}^i Y^i$) we have

 $Y_{j}^{i} = B_{\beta}^{\alpha} B_{\alpha}^{i} B_{j}^{\beta} - \frac{1}{2} a_{\beta} B_{j}^{\beta} Y^{i} (Y^{\alpha} B_{\alpha}^{i} + YY^{i}) Y_{j}$ for some function Y^{α} and Y. Further more (2.14) $Y_{r} Y_{i}^{r} = -\frac{1}{2} \overline{a}_{k}$ So we have

 $\begin{array}{ll} (2.15) \ Y_{j}^{i} &= \ B_{\alpha}^{i} \left(- \ B_{\beta}^{\alpha} \ B_{j}^{\alpha} \ + \ Y \ Y_{j}^{\alpha}\right) - \frac{1}{2} \ a_{j} \ Y^{i} \\ \text{In Particular we shall deal with torsion free recurrent} \\ \text{Finsler connection Rec } \sqrt{(\alpha)} & (\text{T=0) then} \\ (2.16) \ \overline{T}_{jk}^{i}(\textbf{x}) &= \ T_{jk}^{i}(\textbf{x},\textbf{y}) \ + \ C_{jr}^{i}(\textbf{x},\textbf{y}) \ Y_{j}^{r} \ - \ C_{kr}^{i}(\textbf{x},\textbf{y}) \ Y_{j}^{r} \ \text{reduce }) \\ & T_{jk}^{i} = \ C_{jr}^{i}(\textbf{x},\textbf{y}) \ Y_{k}^{r} - \ C_{kr}^{i}(\textbf{x},\textbf{y}) \ Y_{j}^{r} \\ \text{From (2.12) we get} \\ (2.17) \ \text{T}_{\alpha}\beta\gamma \ = \ H_{\alpha\rho} \ \ C_{\beta\gamma}^{\rho} \ - \ H_{\gamma\rho} \ \ C_{\beta2}^{\rho} \\ \text{Where} \\ C_{\beta\gamma}^{\alpha} \ = \ C_{jk}^{i}(\textbf{x},\textbf{y}) \ B_{i}^{\alpha} \ B_{\beta}^{j} \ B_{\gamma}^{k} \end{array}$

Proposition 2.1 :-

In case of torsion free recurrent Finsler Connection Rec. $\sqrt{(a)}$ the induced lineary connection $\sqrt{(y)}$ is recurrent with recurrence vector α_{β} with respect to induced Riemannian Ymetric and torsion tensor of $\sqrt{(y)}$ is ξ /en by (2.17)

III. Y-EXTREMAL HYPERSURFACE :-

A transversal hyper-surface M^{n-1} (c) is called a Y-external hyper-surface if it satisfied equation.

3.1) {
$$\frac{\partial \sqrt{g}}{\partial x_i^i} - \partial(\frac{\partial \sqrt{g}}{\partial B_i^\alpha})/\partial u^2$$
} Yⁱ = 0
Differentiation of
(3.2) $g_{\alpha\beta}(u) = \text{gij}(x,y) B^i_{\alpha} B^j_{\beta}$ gives
 $\frac{\partial g}{\partial B^i_{\alpha}} = (\frac{\partial g \beta \gamma}{\partial B^{\gamma}_{\alpha}}) g g \beta \gamma = \text{gjk}(x,y)$
{ $\frac{\partial (B^r_{\beta} B^k_{\gamma})}{\partial B^i_{\alpha 2}}$ } $g g^{\beta\gamma} = 2g B^{\alpha}_i$
So we have

(3.3) $\frac{\partial \nabla g B}{\partial B_{\alpha}^{i}} = \sqrt{g} B_{i}^{\alpha}$

We shall rewrite equation (3.1) from (3.2) and recurrent properties of $\sqrt{(y)}$ we have

$$\begin{aligned} \frac{\partial \sqrt{g}}{\partial x^{i}} &= \frac{\sqrt{g}}{2} \left(\frac{\partial g_{\alpha}\beta}{x^{i}}\right) g^{\alpha\beta} \\ &= \frac{\sqrt{g}}{2} \left(\frac{\partial g^{2}\beta}{\partial x^{i}}\right) B_{i}^{\alpha} B_{\beta}^{k} g^{\alpha\beta} \\ &= \left(\frac{n-1}{2}\right) \sqrt{g} \,\overline{a}_{i} + \sqrt{g} \left(\overline{g}^{ik} - Y^{j} Y^{k}\right) \overline{\sqrt{jki}} \\ (3.4) \quad \frac{\partial \sqrt{g}}{\partial x^{i}} &= \left(\frac{n-1}{2}\right) \sqrt{g} \,\overline{a}_{i} + \sqrt{g} \left(\sqrt{-r_{i}} - \sqrt{r_{SI}} Y^{r}\right) \\ \text{Next from (3.3) we have} \\ (3.5) \quad \frac{\partial}{\partial u^{\alpha}} \left(\frac{\partial \overline{\sqrt{g}}}{\partial B_{\alpha}^{i}}\right) &= \frac{\partial \sqrt{g}}{\partial u^{\alpha}} B_{i}^{\alpha} + \sqrt{g} \quad \frac{\partial B_{i}^{\alpha}}{\partial u^{\alpha}} \\ \text{Again} \\ (3.6) \quad B_{\alpha;\beta}^{i} &= H_{\alpha\beta} Y^{i} \\ \text{and (3.7)} Y_{;\beta}^{i} &= Y_{\beta}^{\alpha} B_{\alpha}^{i} - \frac{1}{2} a_{\beta} Y^{i} \end{aligned}$$

 $(3.7) \frac{\partial B_{i}^{\alpha}}{\partial u^{\alpha}} B_{\alpha}^{i} Y_{i} - B_{i}^{Y} \sqrt{\gamma_{\alpha}^{\alpha}} \frac{\alpha}{2} + (\delta_{j}^{k} - Yj Y) \sqrt{\int_{lk}^{j}}$ So we obtain $(3.8) \quad \partial \left(\frac{\partial \sqrt{g}}{\partial B_{\alpha}^{i}}\right) / \partial u^{2} = \sqrt{g} \left\{\frac{(n-1)}{2} a_{\alpha} B_{i}^{\alpha} + H_{\alpha}^{\alpha} Y_{i} + T\rho_{\alpha}^{\alpha} \quad B_{i}^{\alpha} + \overline{\Gamma_{lr}^{r}} - \overline{\Gamma_{lrs}} Y^{r} Y^{s}\right\}$ as consequence of (3.4) (3.8) term in curly bracket of eq. (3.1) becomes. $(3.9) \sqrt{g} \left\{\overline{T_{rl}^{r}} + \overline{T_{irs}} Y^{r} Y^{s} - H_{\alpha}^{\alpha} Y_{i} - T_{\rho_{\alpha}}^{\rho} \quad B_{i}^{\alpha} + \frac{n-1}{2} a_{r} Y^{r} Y_{i}\right\}$ from eq. $(4.0) \overline{T_{jk}^{i}} (x) = T_{jk}^{i} (x, y) + C_{jk}^{i} (x, y) Y_{k}^{r} - C_{kr}^{i} (x, y) Y_{j}^{r}$ (3.1) is written in the term $(4.1) M = \left[T_{jk}^{i} (x, y) + C_{j} (x, y) Y_{k}^{j} + \frac{n-1}{2} B_{\alpha}^{i}\right] Y^{k}$ Where $M = g^{\alpha\beta} H_{\alpha} \beta = H_{\alpha}^{\alpha}$ is called metal curvature.

Theorem :-

(3.1) - With respect to h-recurrent Finsler Connection Rec $\sqrt{(T,a)}$ a transversal hyper-surface is Yextermal is eq. (4.1) is satisfied.

REFERENCES

- Barlhel W.: Uber die Minimal Sevchen in gesaserten Finsler Umen Ann. 41 Mat, (4), 36 (1954) 159-190.
- [2]. Cartan E.: Lee espaces de Finsler Actualities 79 Paris (1934).
- [3]. Malsumoto M.: The induced and intrinsic Finsler Connection of hyper-surface and Finslerian Projective geometry.
- [4]. Wagner J.M.: Untereuchungen Über Finsler Chen R Uame Lotos Prag, 84 (10°6).